
MTH251

Zhong Lun

Data Structures and Algorithms I

About Me

 https://www.linkedin.com/in/zhonglun/
 zhonglun@gmail.com
 9647 7009

https://www.linkedin.com/in/zhonglun/
http://localhost:12445/zhonglun@gmail.com

Course Structure
Learning Objectives (Jan ~ Mar 6 weeks, 6 lectures & 6
labs):

1. Python , Complexity & Big O

2. Array , Stack , Queue , and Recursion

3. Linked List

4. Tree

5. Lineary Search , Binary Search , and Algorithm Design & Pattern

6. Review and more

3 assignments & open book exam:

Slides & Notebooks

slides online: https://mth251.fastzhong.com/

 https://mth251.fastzhong.com/mth251.pdf

 labs: https://github.com/fastzhong/mth251/tree/main/public/notebooks

� learning by doing, implementing the algo from scratch

� problem solving

https://mth251.fastzhong.com/
https://mth251.fastzhong.com/mth251.pdf
https://github.com/fastzhong/mth251/tree/main/public/notebooks

Learning Resource
📚 books

https://github.com/fastzhong/mth251/tree/main/public/resources

Learning Resource

if you want to dive deeper into proofs and the mathematics of computer science:

📚 Building Blocks for Theoretical Computer Science by Margaret M. Fleck

https://mfleck.cs.illinois.edu/building-blocks/index-sp2020.html

Clari�cation

Solution related to DSA questions:

⚠ always seek the best time and space complexity by appling DSA taught in MTH251 & MTH252

⚠ in principle, only the standard ADT operations allowed to use by default as the solution has to be language indenpendent

⚠ advanced features and built-in functions from Python not allowed if not clearly asked by the question, e.g. sort/search/�nd

(in)/min(list)/max(list)/set/match … , as the complexity becomes unknown and Python dependent

Python

Why Python
The TIOBE Programming Community index is an indicator of the popularity of programming languages.

Why Python

✔ Easy To Learn

✔ Human Readable

✔ Productivity

✔ Cross Platform

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Readability counts.

Special cases aren’t special enough to break the rules.

There should be one-- and preferably only one --obvious way to do it.

If the implementation is hard to explain, it’s a bad idea.

Python Jobs

✔ backend: Python vs. Java, C++, Go, Php

✔ devops: Python vs. Go, Ruby, Shell

✔ test automation: Python vs. Groovy, shell

✔ data engineering: Python vs. Java, C++

✔ data analytics & visualization: Python vs. R, Java, C++

✔ data science & machine learning: Python vs. R, Julia, C++

Python 101

Compiled vs. Interpreted CPython bytecode Python implementations

Python Data Type & Operators

numbers: int float complex

arithmetic operator: + - * / // % **

bitwise operator: & | ^ >> << ~

range() : a list of integers

strings: '' "" ' " \t \n \r \\ etc.

join() split() ljust() rjust() lower() upper() lstrip() rstrip() strip() etc.

boolean: True False

True: non-zero number, non-empty string, non-empty list

False: 0, 0.0, "", [], None

Python Data Type & Operators

boolean: True False

logic operator: and or not

comparison operator: > < >= <= == ！=

identity operator: is is not

None

type conversion/casting: int() float() str() bool() hex() ord()

Python Collections

collections: list tuple set dictionary

membership operator: in not in

list []: a collection of items, usually the items all have the same type

sequence type, sortable, grow and shrink as needed, most widely used

tuple (): a collection which is ordered and unchangeable

set {}: a collection which is unordered and unindexed

dictionary: a set of key: value pairs, unordered, changeable and indexed

Python Program Structure

variable

statement & comments

Python uses new lines to complete a command, as opposed to other programming languages often use ;

or ()；relies on indentation (whitespace sensitive), to de�ne scope, such as the scope of loops,

functions and classes, as opossed to other programming languages often use {}

control �ow

if … elif … else

while for break continue

Python Program Structure

function

def return

main

advanced:

lambda

decorator

closure

error/exception

handling exception: try … except … else … finally

raise execption: raise

Python OO & Class

Procedural vs. OOP vs. FP

OO Principal

Inherience

Encapsulation

Polymorphism

class, instance, attributes, properties, method

override vs. overload vs. overwrite

Misc.

modular programming: function → class → module → package

Modules: Python module (default main module), C module, Build-in module

Packages:

Standard Lib: math random re os itertools collections

Misc.

Namespaces & Scopes: LEGB rule

memory, copy vs. deepcopy

help

Cheatsheet:
🧾 Python Crash Course - Cheat Sheets
🧾 Comprehensive Python Cheatsheet

https://github.com/ehmatthes/pcc/releases/download/v1.0.0/beginners_python_cheat_sheet_pcc_all.pdf
https://github.com/gto76/python-cheatsheet

Python Tutorials

Programming with Mosh

 Python Tutorial - Python for Beginners 2020

freeCodeCamp

 Learn Python - Full Course for Beginners Tutorial

 Python for Everybody - Full University Python Course

 Intermediate Python Programming Course

Tech With Tim

 Learn Python - Full Course for Beginners Tutorial

The Hitchhiker’s Guide to Python!

https://www.youtube.com/watch?v=kqtD5dpn9C8
https://www.youtube.com/watch?v=rfscVS0vtbw
https://www.youtube.com/watch?v=8DvywoWv6fI
https://www.youtube.com/watch?v=HGOBQPFzWKo
https://www.youtube.com/watch?v=rfscVS0vtbw
https://docs.python-guide.org/

DSA & Complexity

Data Structure & Algorithms (DSA)

A data structure is a way of organizing information so that it can be used effectively by computer

Algorithms provides computer step by step instructions to process the information and solve a problem

Program = Data Structure + Algorithm

 - Input

 - Output

 - De�niteness

 - E�ectiveness

 - Finiteness

Data Structure & Algorithms

Data Structure: index

Algorithm: looking up the page no.

Example: keyword searching

Data Structure & Algorithms

Data Structure: complex number

Algorithm: adding two complex numbers

 a + b = (x + yi) + (u + vi) = (x + u) + (y + v)i

Example: adding two vectors

Data Structure & Algorithms

Linear

Array, String, Linked List

Stack, Queue, Deque, Set, Map/Hash, etc.

Non-Linear

Tree, Graph

Binary Search Tree, Red-Black Tree, AVL, Heap, Disjoin Set, Trie, etc.

Others

Bitwise, BloomFilter, LRU Cache

Data Structure

Algorithms & Data Structure

branching: if-else, switch

iteration: for, while loop

recursion: divide & conquer, backtrace

searching: binary search, depth �rst, breath �rst, A*, etc.

sorting: quick sort, bubble sort, merge sort, etc.

dynamic programming

greedy

…

Algorithms

Algorithms & Data Structure

Why

✓ deeper understanding of computer system

✓ improve coding skill

✓ coding interview

✓ building powerful framework and library

How

� learning by doing, implementing from scratch

� problem solving

Algorithm Complexity Analysis

How to measure Performance/Ef�ciency ?

cpu, memory, io, networking, etc.

no. of lines

worst case vs. best case

code slows as data grows

…

Algorithm Complexity Analysis

Time Complexity : by giving the size of the data set as integer N, consider the number of operations that
need to be conducted by computer before the algorithm can �nish

Space Complexity : by giving the size of the data set as integer N, consider the size of extra space that need
to be allocated by computer before the algorithm can �nish

Good code:

✔ readability
✔ speed
✔ memory

👉 When: Accessing, Searching, Inserting, Deleting, …

Big-O

Lef f(n) and g(n) be functions from positive integers to positive integers to positive reals

f = O(g) if there is a constant c > 0 such that f(n) ≦ c·g(n) for large n

 f(n) grows no faster than g(n)

e.g.

Big-O describes the trend of algorithm performance when the data size increases

f(n) = O(4n +2 8n+ 16) → O(n) →2 g(n) = n2

O(4n +2 8n+ 16) = O(n)2

Big-O

: constant

: logarithmic

: linear

: linearithmic

: polynomial

: exponential

: factorial

O(1)

O(log n)∗

O(n)

O(nlog n)∗

O(n)2

O(2)n

O(n!)

Big-O

👉 Master theorem (analysis of algorithms)

 if & only if
 if & only if
 if & only if
 if & only if (assuming and)

 if & only if

O(f) = f

O(c⋅ f) = O(f)

O(f + g) = O(max(f , g))

O(f)⋅O(g) = O(f ⋅ g)

O(f ⋅ g) ≤ O(f ⋅h) O(g) ≤ O(h)

O(x) ≤a O(x)b a ≤ b

O(a) <x O(b)x a < b

O(x) <c O(d)x d > 1 c ≥ 1 d ≥ 1

O(log x) <∗ O(x)c c > 0

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Big-O

Analysis of Algorithms:

worst case

ignore constant factors, lower-order terms

asymptotic analysis (large input size)

Formally, given functions f (x) and g(x), we de�ne a binary relation: (as)

if and only if:

asymptotic analysis is used to build numerical methods to approximate equation solutions: asymptotic expansion, asymptotic distribution, …

f(x) ∼ g(x) x → ∞

 =
x→∞
lim

g(x)
f(x) 1

https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Asymptotic_distribution

Big-O

😊 🥵

https://www.bigocheatsheet.com/

O(1) < O(log n) <∗ O(n) < O(n log n) <∗ O(n) <2 O(2) <n O(n!)

https://www.bigocheatsheet.com/

Array

Array

To store a list of similar things, example:

 A list of names: [“Alex”, “Bob”, “Charles”, “David”]

 A list of numbers: [1, 2, 3, 4]

Each item in the array referred as “element”

Array

Element Type: same type (array is structured data)

Element Size: �xed

Element Index: 0, 1, …, length - 1

java

String[] cars = {“BMW”, “Toyota”, “Tesla”} // declare & init

Integer[] scores = new Integer[10] // declare

// init

scores[0] = 90

scores[1] = 80

Array 2-D
students = [

 [“Alex”, “M”, “S1111111A”],

 [“Bob”, “M”, “S2222222B”],

 [“James”, “M”, “S3333333C”],

]

students[2] → [“James”, “M”, “S3333333C”]

Students[1][2] → “S2222222B”

Index 0 1 2

0 Alex M S1111111A

1 Bob M S2222222B

2 James M S3333333C

Array Address
str = "HELLO" = ['H', 'E', 'L', 'L', 'O']

data type: char

data type size: 2 byte (1 byte = 8 bits, 0000 0000 ~ 1111 1111)

total_size = array_size * data_type_size

array[i].address = base_address + i * data_type_size

👉 O(1)

Dynamic Array

- what is the good space/slot size for an array?

- when is the good time to expand/shrink the array?

Growth Pattern:

Python: // 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, …

Java:

C#:

👉 memory management is one of the biggest programming challenges.

NewAllocated = (size)newsize +t (newsize >> 3) + (newsize < 9?3 : 6);

((size ∗ 3)/2) + 1

size ∗ 2

Array Complexity
Operation Array Dynamic Array

Accessing O(1) O(1)

Searching O(n) O(n)

Inserting - O(n)

Deleting - O(n)

Python Collection Complexity
List [a, b, c, ...] Dicts {k:v, ...} Set {a, b, c,}

mylist.append(val) O(1) mydict[key] = val O(1) myset.add(val) O(1)

mylist[i] O(1) mydict[key] O(1)

val in mylist O(N) key in mydict O(1) val in myset O(1)

for val in mylist: O(N) for key in mydict: O(N) for val in myset: O(N)

mylist.sort() O(NlogN)

Trade-offs

.. make a list ..

if thing in my_list: # O(N)

✅ Good

.. make a set ..

if thing in my_set: # O(1)

❌ Bad

.. make a list ..

my_set = set(my_list) # O(N)

if thing in my_set: # O(1)

✅ Good

.. make a list ..

my_set = set(my_list) # O(N)

for many_times:

 if thing in my_set: # O(1)

ADT vs. Data Structure

An abstract data type (ADT) is an abstraction of a data structure which provides only the interface to
which a data structure must adhere to. The interface does not give any speci�c details about how something
should be implemented - ADT provides implementation-independent view of a data structure.

Programming language provides different data types to implement/represent a speci�c data structure.

Array - a linear abstract data type

Array - a java data type

Dynamic Array - array with changable size

List - a python data type, more �exible than a dynamic array

ArrayList/Vector - java data type, implementation of List

Stack & Queue

Stack

Sequential Access vs Random Access (such as Array)

LIFO (Last In First Out) sequential collection

Stack: Operations

push() − pushing (storing) an element on the stack

pop() − removing (accessing) an element from the stack

top()/peek() − get the top data element of the stack, without removing it

size(), isEmpty(), isFull()

Stack Complexity
Operation Stack

Accessing O(n)

Searching O(n)

Inserting O(1) (push)

Deleting O(1) (pop)

Queue

FIFO (First In First Out) sequential collection

Queue: Operations

enqueue() − adding (storing) an element to the queue

dequeue() − removing (accessing) an element from the queue

�st()/peek() − get the �rst element of the queue, without removing it

size(), isEmpty(), isFull()

Queue Complexity
Operation Queue

Accessing O(n)

Searching O(n)

Inserting O(1) (enqueue)

Deleting O(1) (dequeue)

Linked List

Linked List

dynamic linear data structure

each item contains data & pointer

data stored in a “Node” class

each item holds a relative position relative to the other items: 1st, 2nd, …, last item

List: Operations (potential)
- add(element)

- append(element)

- insert(position, element)

- delete(element)

- is_empty()

- __len__()

- set(position, element)

- get(position)

- search(element)

- index(element)

- pop()

- pop(position)

Linked List Complexity
Operation Linked List Dynamic Array

Accessing O(n) O(1)

Searching O(n) O(n)

Inserting O(1) 🤔 O(n)

Deleting O(1) 🤔 O(n)

Linked List vs. Array
✔ dynamic, no need to deal with �xed memory size

✖ accessing speed

Array:

Linked List:

Linked List vs. Array

Linked List
Linked List

Doubly Linked List

Circular Linked List

Positional Linked List

Circular Linked List

a linked list where all nodes are connected to form a circle

no null at the end

can iterate from any node

e.g. for cpu job list - OS putting running applications in a list and then to cycle through them by giviing each of them a slice of time to execute,

and then making them wait, when it reaches the end of the list, it can cycle around to the front of the list

circular singly linked list, circular doubly linked list, sorted circular linked list

Circular Linked List: Operations (potential)
- append(element)

- delete(element)

- search(element)

- is_empty()

- __len__()

Positional Linked List
use Position class instead of index

remove iteration

Positional Linked List: Operations (potential)
- �rst()

- last()

- before(position)

- after(position)

- set(position, element)

- search(element)

- is_empty()

- __len__()

- add_�rst(element)

- add_last(element)

- add_before(position, element)

- add_after(position, element)

Recursion

Recursion

Recursion is the process of de�ning a problem (or the solution to a problem) in terms of (a simpler version of)
itself

👉 Recursion by de�nition is a function that calls itself.

Recursion
base case

recursive case

Example:

Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, …

when n = 1, �b(1) = 0

when n = 2, �b(2) = 1

when n > 2, �b(n) = �b(n-1) + �b(n-2)

Recursion vs. Iterative

Anything with a recursion can be done iteratively (loop)

🤗 Intuitive/DRY, code readability

🤔 Optimization, call stack

Recursive Call

Call Stack:

�b_recursive(5):

Recursive Call

Max call stack size (stack over�ow error)

Tail Call Optimization

Memorization

Recursive Call

Fundamental technique to solve problem:

Identifying the base case

Identifying the recursion formula/equation to transform the problem to smaller version

Problem requires back-tracking

Problem has tree structure

Tree

Tree

Tree
HTML DOM tree

<html xmlns="http://www.w3.org/1999/xhtml"

 xml:lang="en" lang="en">

<head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=utf-8" />

 <title>simple</title>

</head>

<body>

<h1>A simple web page</h1>

 List item one

 List item two

<h2>SUSS<h2>

</body>

</html>

Tree Terminology
Node: Root, Leaf, Internal Node

Node: Parent, Children, Sibling

Edge

Degree: no. of outgoing edges or Children

SubTree

Path: A → B → D → H

Level: no. edges in path from root to the

node

Depth: no. edges in path from the node to

the root

Height: no. edges in longest path from the

node to the leaf

Tree Terminology

Level

Depth

Height

Binary Tree

One root

Max 2 child nodes

One and only one path from root to each node (path)

Max nodes on level:

Max nodes total:

2l

2 −h+1 1

Binary Tree
Array

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', '#', '#', '#', '#', '#', 'J']

Left/Right Linked List

Binary Tree Traverse (DFS): pre-order

ROOT → Left → Right

1. Visit the root

2. Traverse the left subtree

3. Traverse the right subtree

A B D H I E J C F G K

Binary Tree Traverse (DFS): in-order

Left → Root → Right

1. Traverse the left subtree

2. Visit the root

3. Traverse the right subtree

H D I B J E A F C K G

Binary Tree Traverse (DFS): post-order

Left → Right → Root

1. Traverse the left subtree

2. Traverse the right subtree

3. Visit the root

H I D J E B F K G C A

Binary Tree Traverse (BFS): level order

1. Visit the root

2. Visit the left node

3. Visit the right node

4. Go to next level

A B C D E F G H I J K

Binary Tree

Complete Binary Tree : every level is completely �lled

except the last (leaf) and all nodes are as far left as possible

Full Binary Tree : every node has two child nodes except

leaf

Perfect Binary Tree : every node has two child nodes

except leaf and all leaves on same level

Trees

Summary

Big-O

😊 🥵

https://www.bigocheatsheet.com/

O(1) < O(log n) <∗ O(n) < O(n log n) <∗ O(n) <2 O(2) <n O(n!)

https://www.bigocheatsheet.com/

Array
Concept consecutive memory space: arr[i].address = base_address + i * data_type_size

same data type → same size for each element

�xed length

Complexity Accessing O(1), Searching O(n)

Notes not memory friendly

cpu cacheable

index from 0

fundamental data structure to implement others such as stack, queue, heap

data type (programming language) vs. data structure

Hands-on dynamic array, stack/queue, binary search, etc.

Stack
Concept LIFO/FILO

Complexity Accessing O(n), Searching O(n), Inserting/push O(1), Deleting/pop O(1)

Notes Stack implementation by dynamic array or linked list

Hands-on function call stack, expression matching, etc.

Queue
Concept FIFO/LILO

Complexity Accessing O(n), Searching O(n), Inserting/enqueue O(1), Deleting/dequeue O(1)

Notes Queue implementation by dynamic array or linked list

Hands-on priority queue, circular queue, job queue, resource pool, etc.

Linked List
Concept nonconsecutive memory space

node: data + pointer

Single Linked List, Doubly Linked List, Circular Linked List, Positional Linked List

Complexity Accessing O(n), Searching O(n), Inserting O(1), Deleting O(1)

Notes accessing slower than array

with/without head/tail node (which don’t store any data)

fundamental data structure to implement others such as skip list, hash table, etc.

Hands-on stack, queue, traverse/reverse/update/merge, etc.

Binary Tree
Concept one root

max 2 child nodes

height & depth

4 traversal (DFS/BFS): in-order(left-root-right), pre-order(root-left-right), post-order(left-right-root), level-

order

proper, perfect, full, complete binary tree

Complexity DFS: time O(n), space O(h)

BFS: time O(n), space O(n)

Notes stored in array or linked nodes

Hands-on 4 traversal

Algorithm Design & Pattens

Linear Search

Linear & Binary Search

Complexity: O(n)

https://www.cs.usfca.edu/~galles/visualization/Search.html

Binary Search

Input: array, target element

Output: position (-1 if not existing)

As we know, whenever we are given a sorted Array or LinkedList or Matrix, and we are asked to �nd a certain element, the best algorithm we can use is the

- Shrink the search space every iteration (recursion)

- Cannot exclude potential answers during each shrinking

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky

— Donald Knuth

Binary Search

Contains

First occurrence of a key

Last occurrence of a key

Least element greater than

Greatest element less than

Closest element

Further reading: Generalized Binary Search with predicates and main theorem:
https://www.topcoder.com/community/competitive-programming/tutorials/binary-search

https://www.topcoder.com/community/competitive-programming/tutorials/binary-search

Two Pointers

In problems where we deal with sorted arrays (or LinkedLists) and need to �nd a set of elements that ful�ll
certain constraints, the Two Pointers approach becomes quite useful. The set of elements could be a pair, a
triplet or even a subarray.

same direction

reverse direction

two sum

Given an array of sorted numbers and a target sum, �nd a pair in the

array whose sum is equal to the given target.

reverse a string

Write a function that reverses a string. The input string is given as an

array of characters char[]. Do not allocate extra space for another

array, you must do this by modifying the input array in-place with O(1)

extra memory.

You may assume all the characters consist of printable ascii

characters.

k’th node from the end of linked list

Given the head of a Singly LinkedList, Find k'th node from the end of a linked list.

Fast & Slow Pointers

The Fast & Slow pointer approach, also known as the Hare & Tortoise algorithm, is a pointer algorithm that
uses two pointers which move through the array (or sequence/LinkedList) at different speeds.

Fast & Slow Pointers, distance btw them

Speed

LinkedList has a cycle

Given the head of a Singly LinkedList, write a function to determine if

the LinkedList has a cycle in it or not.

Sliding Window

In many problems dealing with an array (or a LinkedList), we are asked to �nd or calculate something among
all the contiguous subarrays (or sublists) of a given size.

the average

Given an array, �nd the average of all contiguous subarrays of size ‘K’ in it.

longest substring

Given a string, �nd the length of the longest substring which has no repeating characters.

Example1 Input: String="aabccbb“ Output: 3

Explanation: The longest substring without any repeating characters is "abc".

Example2 Input: String="abbbb“ Output: 2

Explanation: The longest substring without any repeating characters is "ab".

Example3 Input: String="abccde“ Output: 3

Explanation: Longest substrings without any repeating characters are "abc" & "cde".

Lab 1

download and install Anaconda

create and Activate your Anaconda Python env

(Optional) install and setup VS Code

familiar yourself with Python and do exercise 📝 lab1.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab1.ipynb

Lab 1
Download and install Anaconda

 https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual

Lab 1
Create and Activate your Anaconda Python env

1. Launch Conda Navigator

2. Environments → +Create to create a new env (mth251)

3. Switch to your Python env mth251 from “Application on”

4. Install Jupyter Notebook

5. After that, Launch Jupyter Notebook

Lab 1
Create and Activate your Anaconda Python env

 Also possible to perform via command line:

copy & paste the Jupyter link in the prompt to your browser

save notebooks to your local

Control-C to stop Jupyter from the command line

> # create the env

> conda create -n mth251 python=3.8

> # activate the env

> conda activate mth251

> # install jupyter

> conda install -c conda-forge notebook

> # multipledispatch for lab1

> conda install -c anaconda multipledispatch

> # start jupyter notebook

> jupyter notebook

Lab 1
Create and Activate your Anaconda Python env

6. Now you are ready to create, edit and run

Jupyter notebooks (lab1.ipynb):

Lab 1
 VS Code

VS Code now fully integrated with Jupyter notebook, refer to this link:

 Jupyter Notebooks in VS Code

 Google Colab

Google provides online Jupyter env:

 https://colab.research.google.com/

notebooks: https://github.com/fastzhong/mth251/tree/main/public/notebooks

colab: https://colab.research.google.com/github/fastzhong/mth251/blob/main/public/notebooks/lab1.ipynb

https://www.youtube.com/watch?v=Ozq24uAshXo
https://colab.research.google.com/
https://github.com/fastzhong/mth251/tree/main/public/notebooks
https://colab.research.google.com/github/fastzhong/mth251/blob/main/public/notebooks/lab1.ipynb

Lab 1

lab1.ipynb

Python

1. Data Type & Operators

2. Collections

3. Program Structure

4. OO & Class

Big O

Lab 2

review Array, Stack, Queue, Recursion

exercise 📝 lab2.ipynb

priority queue

circular queue

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab2.ipynb

Lab 2
Exercise: two sum

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example 1

Input: nums = [2,7,11,15], target = 9

Output: [0,1]

Because nums[0] + nums[1] == 9, we return [0, 1]

Example 2

Input: nums = [3,2,4], target = 6

Output: [1,2]

Example 3

Input: nums = [3,3], target = 6

Output: [0,1]

Lab 2
Exercise: valid parentheses

Given a string s containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.

An input string is valid if:

Open brackets must be closed by the same type of brackets.

Open brackets must be closed in the correct order.

Example 1

Input: s = "()[]{}" Output: true

Example 2

Input: s = "(]" Output: false

Example 3

Input: s = "([)]" Output: false

Example 4

Input: s = "{[]}" Output: true

Lab 2

Priority Queue is similar to queue but the element with higher priority can be moved forward to the front. Use exiting Queue class to

implement a priority queue (element with lower value has higher priority).

 Priority Queue can be used in Printer Jobs or Schedule Tasks.

Lab 2

Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position

is connected back to the �rst position to make a circle. It is also called "Ring Bu�er".

Design your implementation of circular queue.

Lab 2
Circular Queue

1. init

2. enqueue D1

3. enqueue D2, D3, D4 and dequeue D1

Lab 2
Circular Queue

4. enqueue D5, D6, D7, D8

5. dequeue D2, D3, D4, D5 and enqueue D9,

D10

Lab 2
Circular Queue

 One of the bene�ts of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue

becomes full, we cannot insert the next element even if there is a space in front of the queue (and it does not prevent the program accidentally

creates a large queue or stack and use up the memory).

Implementation of CircularQueue class:

enqueue(): insert the element

dequeue(): delete the element

front(): return the �rst element in the queue, if queue is empty, return None

rear(): return the last element in the queue, if queue is empty, return None

is_empty(): return true if queue is empty

is_full(): return true if queue is full

Lab 3

Python (lab1)

5. misc.

6. PEP8

review Linked List, Doubly Linked List

exercise 📝 lab3.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab3.ipynb

Lab 3
Exercise

implement Stack by linked list

implement Queue by linked list

reverse a linked list

recursive implementation

iterative implementation

Lab 4

review Binary Tree and 4 traverse methods

exercise 📝 lab4.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab4.ipynb

Lab 4
Exercise

convert binary tree from linked list to array

convert binary tree from array to linked list

check a balanced binary tree

Lab 4
Exercise: get maximum depth of binary tree

A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

For example: the maximum depth is 3

Lab 4
Exercise: get minimum depth of binary tree

A binary tree's minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

For example: the minimum depth is 3

Lab 4
Exercise: check a complete binary tree

In a complete binary tree, every level, except possibly the last, is completely �lled, and all nodes in the last level are as far left as possible. It can

have between 1 and 2h nodes inclusive at the last level h.

complete = true: complete = false:

Lab 5

review linear search, binary search

let us do some exercises 📝 lab5.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab5.ipynb

Lab 5
lineary search & binary search

1. Go to https://www.cs.usfca.edu/~galles/visualization/Search.html to understand how Linear Search & Binary Search is working

2. Implement Linear Search & Binary Search in Python by yourself:

familiar with Python coding style

understand the input, output, steps and ending condition

learn and compare di�erent approaches (time & space complexity)

test code reliability with di�erent cases

http://localhost:12445/%5Bhttps://www.cs.usfca.edu/~galles/visualization/Search.html%5D

Lab 5
Exercise: palindrome

Implement a Python function to determines if a string is a palindrome, for example, ‘racecar’ and ‘level’ are palindromes

Lab 5
Exercise: remove duplicate numbers

Given a sorted array nums, remove the duplicates in-place such that each element appears only once and returns the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

Example 1

Input: nums = [1,1,2]

Output: 2, nums = [1,2]

Explanation: Your function should return length = 2, with the �rst two elements of nums being 1 and 2 respectively. It doesn’t matter what you

leave beyond the returned length.

Example 2

Input: nums = [0,0,1,1,1,2,2,3,3,4]

Output: 5, nums = [0,1,2,3,4]

Explanation: Your function should return length = 5, with the �rst �ve elements of nums being modi�ed to 0, 1, 2, 3, and 4 respectively. It doesn’t

matter what values are set beyond the returned length.

Lab 6

TMA review

