- MTH251

Data Structures and Algorithm_é I

‘Zhong Lun

About Me

M https://www.linkedin.com/in/zhonglun/

M zhonglun@gmail.com

[J 9647 7009

Lun Zhong ;;/ GovTech Singapore
Lfead Solutions Archutect at GovTech Singapore N% National University of
Singapore - Contact info "2 Singapore

500+ connections

CAdd profile section) (More)

https://www.linkedin.com/in/zhonglun/
http://localhost:12445/zhonglun@gmail.com

Course Structure

{Je];;lrning Objectives (Jan ~ Mar 6 weeks, 6 lectures & 6 3 assignments & open book exam:
abs):

Python, Complexity & Big O

Array, Stack, Queue, and Recursion

Linked List

Tree

Lineary Search , Binary Search , and Algorithm Design & Pattern

. Review and more

Assessment

Description

Weight
Allocation

Assignment 1

Tutor-Marked Assignment 1

10%

Assignment 2

Tutor-Marked Assignment 2

10%

Assignment 3

Tutor-Marked Assignment 3

10%

Examination

Open book exam

70%

TOTAL

100%

Slides & Notebooks

slides online: https://mth251.fastzhong.com/

%, learning by doing, implementing the algo from scratch

& problem solving

https://mth251.fastzhong.com/
https://mth251.fastzhong.com/mth251.pdf
https://github.com/fastzhong/mth251/tree/main/public/notebooks

Learning Resource

Second Edition

SUS

SINGAPORE UNIVERSITY
OF SOCIAL SCIENCES

Data Structures
& Algorithms

grokking
A Common-Sense Guide to

Data Structures algorithms
and Algorithms

Level Up Your Core
Programming Skills

An illustrated guide for
i'r";r.'lllli]ll'r‘ l'll.ll |_|t|'|‘_'r ('Ilriflll" IH")I)II'

Aditys Y. Bhargava

MTH251

Data Structures and
Algorithms I

School of Science and Technology
Study Guide

MichaeL T. GoooricH ® Roserto Tamassia ® Micuaer H. Goowasser

’ THOMAS H CORMEN
CHARLES E. LEISERSON
ROKNALD L. RIVEST

l CLIFFORD STEIN

\
2 \‘
INTRODUCTION TO

ALGORIT

i

Algorithms

ROBERT SEDOEWICK KEYIN WATHNE

https://github.com/fastzhong/mth251/tree/main/public/resources

Learning Resource

if you want to dive deeper into proofs and the mathematics of computer science:

& Building Blocks for Theoretical Computer Science by Margaret M. Fleck

https://mfleck.cs.illinois.edu/building-blocks/index-sp2020.html

Clarification

Solution related to DSA questions:
N always seek the best time and space complexity by appling DSA taught in MTH251 & MTH252
/N in principle, only the standard ADT operations allowed to use by default as the solution has to be language indenpendent

/N advanced features and built-in functions from Python not allowed if not clearly asked by the question, e.g. sort/search/find

(in)/min(list)/max(list)/set/match ..., as the complexity becomes unknown and Python dependent

Python

Why Python

[The TIOBE Programming Community index is an indicator of the popularity of programming languages.

Oct 2021 Oct 2020 Change Programming Language Ratings Change
1 3 A @ Python 11.27% -0.00%
2 1 v e C 11.16% -5.79%
3 2 v - 8, Java 10.46% -2.1%
4 4 @ C++ 7.50% +0.57%
5 5 @ C# 5.26% +1.10%
6 6 @ Visual Basic 5.24% +1.27%
7 7 JS JavaScript 2.19% +0.05%

8 10 A SQL 217% +0.61%

Why Python

v Easy To Learn
v Human Readable
v Productivity

v Cross Platform

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Readability counts.

Special cases aren’t special enough to break the rules.

There should be one-- and preferably only one --obvious way to do it.

If the implementation is hard to explain, it’s a bad idea.

Python Jobs

v backend: Python vs. Java, C++, Go, Php

v devops: Python vs. Go, Ruby, Shell

v test automation: Python vs. Groovy, shell

v data engineering: Python vs. Java, C++

v data analytics & visualization: Python vs. R, Java, C++

v data science & machine learning: Python vs. R, Julia, C++

Python 101

e (Compiled vs. Interpreted e (CPython bytecode e Python implementations

Implementation Virtual Machine Ex) Compatible Language
Compiled Interpreted
CPython CPython VM
C, C++, Go, Fortran, Pascal Python, PHP, Ruby, JavaScript
(Jython BTl
[Language] Language
. g IronPython CLR C#
"Compiling" . »
Rea dy to Run! E::lthirer: cjoynt‘h?llé) Brython Javascript engine (e.g., V8) JavaScript
Machine Code B B

\ J
J RubyPython Ruby WM Ruby
1 "Interpreting”

1 " Virtual Machine
Ready to Run! »

Machine Code CPython Jython
) interpreter interpreter

CPython VM

Python Data Type & Operators

Jupyter
e

= pnumbers: int float complex

= grithmetic operator: + - * / /7 % =
= bitwise operator: & | A > << -

" range() : alist of integers
m strings: 'r "t ' " A\t \n \r \\ etc

B join() split() ljust() rjust() Llower() upper() Llstrip() rstrip() strip() etc.
= boolean: True False

= True: non-zero number, non-empty string, non-empty list

s False:0,0.0," [], None

Python Data Type & Operators

Jupyter
e

® bpoolean: True False

=]ogic operator: and or not
® comparison operator: > < >= <= == | =

= jdentity operator: is is not
= None

= type conversion/casting: int() float() str() bool() hex() ord()

Python Collections

Jupyter
e

s collections: list tuple set dictionary
= membership operator: in not in
= Jist []: a collection of items, usually the items all have the same type
= sequence type, sortable, grow and shrink as needed, most widely used
= tuple (): a collection which is ordered and unchangeable
= set {}: a collection which is unordered and unindexed

= dictionary: a set of key: value pairs, unordered, changeable and indexed

Python Program Structure

S
Jupyter
e

m variable

= statement & comments

= Python uses new lines to complete a command, as opposed to other programming languages often use ;
or () ; relies on indentation (whitespace sensitive), to define scope, such as the scope of loops,

functions and classes, as opossed to other programming languages often use {3}
= control flow

u if ... elif ... else

o while for break continue

Python Program Structure

S
Jupyter
e

= function

B def return
H main
= advanced:
= Jambda
= decorator

s closure

= error/exception

= handling exception: try .. except .. else .. finally

® raise execption: raise

Python OO & Class

Jupyter
e

u Procedural Vvs. OOP vs. FP

= OO Principal

= Inherience
N Encapsulation

® Polymorphism
= class, instance, attributes, properties, method

u override VS. overload VS. overwrite

Misc.

= modular programming: function =2 class —> module —2 package

= Modules: Python module (default main module), C module, Build-in module

= Packages:

N Standard Lib: math random re o0s itertools collections

Misc.

= Namespaces & Scopes: Lecs rule

The LEGB Rule

Local — Enclosing — Global — Built-in

Scope Scope Scope Scope

= memory, copy vs. deepcopy
= help

Cheatsheet:

EEEEEEE

RECEIPT

https://github.com/ehmatthes/pcc/releases/download/v1.0.0/beginners_python_cheat_sheet_pcc_all.pdf
https://github.com/gto76/python-cheatsheet

Python Tutorials

Programming with Mosh

@ Python Tutorial - Python for Beginners 2020

freeCodeCamp

@ Learn Python - Full Course for Beginners Tutorial

Tech With Tim

@ Learn Python - Full Course for Beginners Tutorial

https://www.youtube.com/watch?v=kqtD5dpn9C8
https://www.youtube.com/watch?v=rfscVS0vtbw
https://www.youtube.com/watch?v=8DvywoWv6fI
https://www.youtube.com/watch?v=HGOBQPFzWKo
https://www.youtube.com/watch?v=rfscVS0vtbw
https://docs.python-guide.org/

DSA & Complexity

Data Structure & Algorithms (DSA)

A data structure is a way of organizing information so that it can be used effectively by computer

Algorithms provides computer step by step instructions to process the information and solve a problem

Program = Data Structure + Algorithm

- Input

- Output

- Definiteness
- Effectiveness

- Finiteness

Data Structure & Algorithms

Example: keyword searching

Data Structure: index

Algorithm: looking up the page no.

738

abc module, 60, 93, 306
Abelson, Hal, 182
abs function, 29, 75
abstract base class, 60, 93-95, 306, 317,
406
abstract data type, v, 59
deque, 247-248
graph, 620-626
map, 402-408
partition, 681-684
positional list, 279-281
priority queue, 364
queue, 240
sorted map, 427
stack, 230-231
tree, 305-306
abstraction, 58-60
(a,b) tree, 712-714
access frequency, 286
accessors, 6
activation record, 23, 151, 703
actual parameter, 24
acyclic graph, 623
adaptability, 57, 58
adaptable priority queue, 390-395, 666,
667
AdaptableHeapPriorityQueue class,
392-394, 667
adapter design pattern, 231
Adel’son-Vel’skii, Georgii, 481, 535
adjacency list, 627, 630631
adjacency map, 627, 632, 634
adjacency matrix, 627, 633
ADT, see abstract data type
Aggarwal, Alok, 719
Aho, Alfred, 254,298, 535,618
Ahuja, Ravindra, 696
algorithm, 110
algorithm analysis, 123-136
average-case, 114
worst-case, 114
alias, 5, 12, 101, 189
all function, 29
alphabet, 583
amortization, 164, 197-200, 234,237,246,
376, 681-684
ancestor, 302

Index

and operator, 12
any function, 29
arc, 620
arithmetic operators, 13
arithmetic progression, 89, 199-200
ArithmeticError, 83, 303
array, 9, 183-222, 223,227
compact, 190, 711
dynamic, 192-201, 246
array module, 191
ArrayQueue class, 242-246, 248, 292,
306
ASCIL, 721
assignment statement, 4, 24
chained, 17
extended, 16
simultaneous, 45, 91
asymptotic notation, 123-127, 136
big-Oh, 123-127
big-Omega, 127, 197
big-Theta, 127
AttributeError, 33, 100
AVL tree, 481-488
balance factor, 531
height-balance property, 481

back edge, 647, 689

backslash character, 3

Baeza-Yates, Ricardo, 535, 580,618,719

Bartuvka, Otakar, 693, 696

base class, 82

BaseException, 83, 303

Bayer, Rudolf, 535,719

Beazley, David, 55

Bellman, Richard, 618

Bentley, Jon, 182, 400, 580

best-fit algorithm, 699

BES, see breadth-first search

biconnected graph, 690

big-Oh notation, 123-127

big-Omega notation, 127, 197

big-Theta notation, 127

binary heap, 370-384

binary recursion, 174

inary search, 155—

428-433,571

binary search tree, 332, 460-479

162-163,

Data Structure & Algorithms

Example: adding two vectors

Data Structure: complex number

Algorithm: adding two complex numbers

a+tb=X+yi)+(U+vi)=(X+u)+(y+V)

Data Structure & Algorithms

Data Structure

= Linear

= Array, String, Linked List

= Stack, Queue, Deque, Set, Map/Hash, etc.
= Non-Linear

= Tree, Graph

= Binary Search Tree, Red-Black Tree, AVL, Heap, Disjoin Set, Trie, etc.
= QOthers

= Bitwise, BloomFilter, LRU Cache

Algorithms & Data Structure

Algorithms

branching: if-else, switch

iteration: for, while loop

recursion: divide & conquer, backtrace

searching: binary search, depth first, breath first, A*, etc.
sorting: quick sort, bubble sort, merge sort, etc.
dynamic programming

greedy

Algorithms & Data Structure

Why

v deeper understanding of computer system
v improve coding skill

v coding interview

v building powerful framework and library
How

X, learning by doing, implementing from scratch

& problem solving

Algorithm Complexity Analysis

How to measure Performance/Efficiency ?

= Cpu, memory, io, networking, etc.
= no. of lines
= worst case vs. best case

= code slows as data grows

Algorithm Complexity Analysis

Time Complexity : by giving the size of the data set as integer N, consider the number of operations that
need to be conducted by computer before the algorithm can finish

Space Complexity : by giving the size of the data set as integer N, consider the size of extra space that need
to be allocated by computer before the algorithm can finish

Good code:

V readability
V speed
v/ memory

< When: Accessing, Searching, Inserting, Deleting, ...

Big-0O

-
Jupyter

Lef f(n) and g(n) be functions from positive integers to positive integers to positive reals
f=0(g) if there is a constant c > 0 such that f(n) = c-g(n) for large n

£ 1(m) BrYis DR {astel than g(n)

e.g.
f(n) = O(4n* + 8n + 16) — O(n?) — g(n) = n?
O(4n* + 8n + 16) = O(n?)

Big-0 describes the trend of algorithm performance when the data size increases

Big-0O

constant
logarithmic
linear
linearithmic
polynomial
exponential

factorial

Big-0O

& Master theorem (analysis of algorithms)

o(f) =1

O(c- f) = O(¥)

O(f +g) = O(maz(f,g))

O(f)-O(g9) = O(f-9)

O(f-g9) < O(f-h) if &only if O(g) < O(h)

O(z%) < O(z®) if &onlyifa <b

O(a®) < O") if&onlyifa <b

O(z°) < O(d*) if &only if d > 1 (assuming ¢ > 1 and d > 1)
O(logsz) < O(z¢) if & only if ¢ > 0

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Big-0O

Analysis of Algorithms:

= worst case
= ignore constant factors, lower-order terms
= asymptotic analysis (large input size)

Formally, given functions f(x) and g(x), we define a binary relation: f(z) ~ g(z) (as ¢ — o)

if and only if: lim {2 — 1

00 9(2)

asymptotic analysis is used to build numerical methods to approximate equation solutions: asymptotic expansion, asymptotic distribution, ...

https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Asymptotic_distribution

Big-0O

© 0(1) < O(log, n) < O(n) < O(nlog, n) < O(n?) < O2") < O(n) @

Big-O Complexity Chart
[Horribie] [sag] Fsir [ood] [Excettent]

Operations

Elements

https.//www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Array

Array

To store a list of similar things, example:

A list of names: [“Alex”, “Bob”, “Charles”, “David"]
A list of numbers: [1, 2, 3, 4]

Each item in the array referred as “element”

Array

= Element Type: same type (array is structured data)

m Element Size: fixed

java
String[] cars = {“BMW”, “Toyota”, “Tesla”} // declare & init

Integer[] scores = new Integer[10] // declare

// init
scores[@] = 90
scores[1] = 860

= Element Index: 0, 1, ..., length - 1

Array 2-D

students =
[“Alex”, “M", “STT11111A"],
[“Bob”, "M", "“S2222222B"],
[“James”, “M", “S3333333C"],

students[2] — [“James”, “M", “S3333333C"]
Students[1][2] — “S2222222B"

Index 0 1 2
0 Alex M S1111111A
1 Bob M S2222222B
2 James M $3333333C

Array Address

Str. — IIHELLOII — ['H', IEII ILII lLl’ IOI]

Memory

2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | 2168 | 2169
Address

Computer’s

H E L L O
memory

Index
Number

data type: char
data type size: 2 byte (1 byte = 8 bits, 0000 0000 ~ 1111 1111)

total_size = array_size * data_type_size
array[il.address = base_address + i * data_type_size

= 0(1)

Dynamic Array

_
Jupyter
N

- what is the good space/slot size for an array?

- when is the good time to expand/shrink the array?

Growth Pattern:

o PYthOHZ NewAllocated = (size;)newsize + (newsize >> 3) + (newsize < 973:6); // 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
mJava: ((size*3)/2) +1

B C#: sizex?2

< memory management is one of the biggest programming challenges.

Array Complexity

Accessing O(1) O(1)
Searching O(n) O(n)
Inserting - O(n)

Deleting - O(n)

Python Collection Complexity

mylist.append(val) O(1) mydict[key] = val O(1) myset.add(val) O(1)
mylist[i] O(1) mydict[key] O(1)

val in mylist O(N) key in mydict O(1) valin myset O(1)
for val in mylist: O(N) for key in mydict: O(N) for val in myset: O(N)
mylist.sort() O(NlogN)

Trade-offts

.. make a list
if thing in my_list: # O(N)

Good
.. make a set
if thing in my_set: # 0(1)

XK Bad

.. make a list

my _set = set(my_Llist) # O(N)
if thing in my_set: # 0(1)

Good
.. make a list
my_set = set(my_Llist) # O(N)
for many times:
if thing in my_set: # O(D)

ADT vs. Data Structure

An abstract data type (ADT) is an abstraction of a data structure which provides only the interface to
which a data structure must adhere to. The interface does not give any specific details about how something
should be implemented - ADT provides implementation-independent view of a data structure.

Programming language provides different data types to implement/represent a specific data structure.

B Array - a linear abstract data type
® Array - a java data type
® Dynamic Array - array with changable size

B List- a python data type, more flexible than a dynamic array

B ArrayList/Vector - java data type, implementation of List

Stack & Queue

Stack

= Sequential Access vs Random Access (such as Array)

= LIFO (Last In First Out) sequential collection

Stack: Operations

= push() - pushing (storing) an element on the stack

= pop() - removing (accessing) an element from the stack

= top()/peek() — get the top data element of the stack, without removing it
= size(), isEmpty(), isFull()

Push Pop

H-E H-m

Stack Complexity

T

Accessing O(n)
Searching O(n)
Inserting O(1) (push)

Deleting O(1) (pop)

Queue

= FIFO (First In First Out) sequential collection

p= 1|l Iﬂl

Queue: Operations

= enqueue() - adding (storing) an element to the queue

= dequeue() - removing (accessing) an element from the queue

= fist()/peek() — get the first element of the queue, without removing it
= size(), isEmpty(), isFull()

[
! 1=
=l=1-1-] =l=1-1 =]

Queue Complexity

operaton ——queve

Accessing O(n)
Searching O(n)
Inserting O(1) (enqueue)

Deleting O(1) (dequeue)

Linked List

Linked List

= dynamic linear data structure
= each item contains data & pointer

= data stored in a “Node” class

= each item holds a relative position relative to the other items: 1st, 2nd, ..., last item

head tail

N\

El " E2 - E3 | @

List: Operations (potential)

- add(element)
- append(element)
- insert(position, element)
- delete(element)
- Is_empty()
len()
- set(position, element)
- get(position)
- search(element)
- index(element)

- pop()
- pop(position)

Linked List Complexity

Accessing O(n) O(1)
Searching O(n) O(n)
Inserting O(1) & O(n)

Deleting o(1) & O(n)

Linked List vs. Array

v dynamic, no need to deal with fixed memory size

® accessing speed

Array:

Linked List:

Memory
Address

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

Computer’s
memory

Index
Number

Linked List vs. Array

Capacity: small -> big

Inside CPU -

SRAM

Memory
DRAM

y %

Price: high -> low

Linked List

Linked List

Doubly Linked List

Circular Linked List

Positional Linked List

head tail
\ .
| El 'I E2 —I—' E3 &
head tail
N\ N\
@ | E1 " E2 E3 | ©
head tail
L o
I El | E2 S

position

position

position

position

E2

F4 | O

Circular Linked List

a linked list where all nodes are connected to form a circle

® nonull atthe end

® caniterate from any node

B e.g forcpujob list - OS putting running applications in a list and then to cycle through them by giviing each of them a slice of time to execute,

and then making them wait, when it reaches the end of the list, it can cycle around to the front of the list

circular singly linked list, circular doubly linked list, sorted circular linked list

Circular Linked List: Operations (potential)

- append(element)
- delete(element)

- search(element)
- is_empty()
- _len_ ()

Positional Linked List

s use Position class instead of index

= remove iteration

Positional Linked List: Operations (potential)

- first()

- last()

- before(position)

- after(position)

- set(position, element)
- search(element)

- is_empty()

- _len_ ()

- add_first(element)

- add_last(element)

- add_before(position, element)

- add_after(position, element)

Recursion

Recursion

Recursion is the process of defining a problem (or the solution to a problem) in terms of (a simpler version of)
itself

< Recursion by definition is a function that calls itself.

Recursion

m base case

® recursive case

def fib_recursive(n):
Example: i (0= 1)
return @ base case
if (n — 2): k———

. . return 1
Fibonacci sequence O, 1, 1, 2, 3, 5, 8, return fib_recursive(n-1) + fib_recursive(n-2) <= recursive case

m whenn=1,fib(1)=0
= whenn=2,fib2)=1
= when n > 2, fib(n) =fib(n-1) + fib(n-2)

Recursion vs. Iterative

[Anything with a recursion can be done iteratively (loop)

. . . e def fib_recursive(n):
@ Intuitive/DRY, code readability T L S
if (n == 2):

return 1
return fib_recursive(n-1) + fib_recursive(n-2) = recursive case

€ Optimization, call stack def fib_iterative(n):
fib = [0,1]
i=2

while (i < n): # index: 2, 3, ..., n-1
fib.append(fib[i-1] + fib[i-2]) # Ffib[1]
i+=1

return fib[n-1] # the nth number

Recursive Call

Call Stack:

fib recursive(5):

number = 5

Will return:
5 * factorial(4)

Will return:
2 %]

number = 2

c()
b() b() b()
a) | a0 || a0 || a0 || a0

The “call stack” is a stack of “frame objects”.

>

(frame object == a function call)

number = 4
>

Will return:
4 * [actorial(3)

number = 3

Will return:
3 * factorial(2)

>

number = 2

Will return:
2 * factorial(1)

number = 3

Will return: >
3*2

number = 4

Will return:
4% 6

>

number = 5

Will return:

5*%24

>

number = 1

Will return:
1

» Empty

Recursive Call

= Max call stack size (stack overflow error)
= Tail Call Optimization

= Memorization

Recursive Call

Fundamental technique to solve problem:

= [dentifying the base case

= Identifying the recursion formula/equation to transform the problem to smaller version

= Problem requires back-tracking

= Problem has tree structure

Tree

Tree

[s PURCHASING

PROCESS

z ﬂ ﬂ Complete Purchase
Requisition Form

Lrsta Pevimngie
Craef Marsrmng Offcer

J

Purchase
N Requisition

Credit Card

Fill OQut CCPR

YES ¢
A 4

IC's Agreement Obtain P.O. from
filled out or on File Controller

Invoice
P.OQ.

To Controller

Tree

HTML DOM tree

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml :lang="en" Llang="en">

<head>

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" /> 0 e
<title>simple</title>
</head>
ONCHOSORS
<h1>A simple web page</hl>

List item one
List item two</lLi> o o .

<h2>SUSS<h2>

</body>
</html>

Tree Terminology

m Node: Root, Leaf, Internal Node Root

m Node: Parent, Children, Sibling %

m Edge /\A/\ e
. . M M # _I

Degree: no. of outgoing edges or Children

Level 1
= SubTree /\J\ /\/\

m Path:-A—-B—D—H Parent Node }-ﬂ \:/. Siblings - » G | Level2
m | evel: no. edges in path from root to the _’ s }J

node Child Node *-\H/' \:/ \f/ Level 3
A

= Depth: no. edges in path from the node to
the root Sub-tree Leaf Node

= Height: no. edges in longest path from the

node to the leaf

Tree Terminology

Level

Z = yideq

Depth
Height

Ty = wblen

Binary Tree

= One root

= Max 2 child nodes

= One and only one path from root to each node (path)
= Max nodes on level: 2

= Max nodes total: 27+t —1

Binary Tree

Array

[IAI' IBI' lCl' IDl’ IEI’ lFl' IGl' IHI’ III' I#l' I#l' I#l' I#l’ I#l' IJI]

Left/Right Linked List

Left Child Right Child

Address Data ddress
|~ A —
i &
B \ C
o B
\ naull E null null F

B 'y
| naull |

Binary Tree Traverse (DES): pre-order

-
Jupyter
.\/

ROOT — Left — Right
1. Visit the root
2. Traverse the left subtree

3. Traverse the right subtree

ABDHIEJCFGK

Binary Tree Traverse (DFS): in-order

-
Jupyter
.\/

Left — Root — Right
1. Traverse the left subtree

2. Visit the root

3. Traverse the right subtree

HDIBJEAFCKG

Binary Tree Traverse (DFS): post-order

-
Jupyter
.\/

Left — Right — Root
1. Traverse the left subtree
2. Traverse the right subtree

3. Visit the root

HIDJEBFKGCA

Binary Tree Traverse (BES): level order

-
Jupyter
.\/

1. Visit the root
2. Visit the left node
3. Visit the right node

4. Go to next level

ABCDEFGHI]JK

Binary Tree

= Complete Binary Tree : every level is completely filled

except the last (leaf) and all nodes are as far left as possible

= Full Binary Tree : every node has two child nodes except

= Perfect Binary Tree: every node has two child nodes

Complete Binary Tree Full Binary Tree Perfect Binary Tree
except leaf and all leaves on same level ’ v v v

Trees

~— Full Binary Tree

-— Complete Binary Tree
— Perfect Binary Tree
Binary Tree — BST(Binary Search Tree)

AVL
~—~ self-balanced —E
Red-Black Tree

“— Segment Tree

B+

Bt
B Tree

Tree 23334

~— Binary Heap

l— Min Heap

— Fibonacci Heap

~— Treap

Summary

Big-0O

© 0(1) < O(log, n) < O(n) < O(nlog, n) < O(n?) < O2") < O(n) @

Big-O Complexity Chart
[Horribie] [sag] Fsir [ood] [Excettent]

Operations

Elements

https.//www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Array

Concept = consecutive memory space: arr[il.address = base_address + i * data_type_size

= same data type — same size for each element

» fixed length

Complexity Accessing O(1), Searching O(n)

Notes = not memory friendly

® Cpu cacheable
» index from 0
» fundamental data structure to implement others such as stack, queue, heap

s data type (programming language) vs. data structure

Hands-on dynamic array, stack/queue, binary search, etc.

Stack

Concept LIFO/FILO
Complexity Accessing O(n), Searching O(n), Inserting/push O(1), Deleting/pop O(1)
Notes Stack implementation by dynamic array or linked list

Hands-on function call stack, expression matching, etc.

Queue

Concept FIFO/LILO
Complexity Accessing O(n), Searching O(n), Inserting/enqueue O(1), Deleting/dequeue O(1)
Notes Queue implementation by dynamic array or linked list

Hands-on priority queue, circular queue, job queue, resource pool, etc.

Linked List

Concept = nonconsecutive memory space

= node: data + pointer

= Single Linked List, Doubly Linked List, Circular Linked List, Positional Linked List

Complexity Accessing O(n), Searching O(n), Inserting O(1), Deleting O(1)

Notes = accessing slower than array

= with/without head/tail node (which don't store any data)

= fundamental data structure to implement others such as skip list, hash table, etc.

Hands-on stack, queue, traverse/reverse/update/merge, etc.

Binary Tree

Concept = oneroot

= max 2 child nodes

= height & depth

= 4 traversal (DFS/BFS): in-order(left-root-right), pre-order(root-left-right), post-order(left-right-root), level-
order

= proper, perfect, full, complete binary tree
Complexity . pFs: time O(n), space O(h)
= BFS: time O(n), space O(n)

Notes stored in array or linked nodes

Hands-on 4 traversal

Algorithm Design & Pattens

Linear Search

Linear & Binary Search

Complexity: o(n)

https://www.cs.usfca.edu/~galles/visualization/Search.html

Binary Search

= [nput: array, target element

= Qutput: position (-1 if not existing)
As we know, whenever we are given a sorted Array or LinkedList or Matrix, and we are asked to find a certain element, the best algorithm we can use is the

- Shrink the search space every iteration (recursion)

- Cannot exclude potential answers during each shrinking

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky
— Donald Knuth

Binary Search

= Contains

= First occurrence of a key

= Last occurrence of a key

= Least element greater than
= (Greatest element less than

m (Closest element

Further reading: Generalized Binary Search with predicates and main theorem:
https://www.topcoder.com/community/competitive-programming/tutorials/binary-search

https://www.topcoder.com/community/competitive-programming/tutorials/binary-search

Two Pointers

In problems where we deal with sorted arrays (or LinkedLists) and need to find a set of elements that fulfill
certain constraints, the Two Pointers approach becomes quite useful. The set of elements could be a pair, a

triplet or even a subarray.

m same direction

processed not needed unknown

0 i j n

m reverse direction

processed unknown processed

0 i j n

two sum

Given an array of sorted numbers and a target sum, find a pair in the

array whose sum is equal to the given target.

Pointer1 Pointer2
target sum = 6 11231 4] 6

1+ 6 > target sum, therefore let's decrement Pointer2

Pointer1 Pointer2

v v

11231 4] 6

1 + 4 < target sum, therefore let's increment Pointer1
Pointer1 Pointer2

Voo

112]13]4] 60

2 + 4 == target sum, we have found our pair!

reverse a string

Write a function that reverses a string. The input string is given as an
array of characters char[]. Do not allocate extra space for another
array, you must do this by modifying the input array in-place with O(1)

extra memory.

You may assume all the characters consist of printable ascii

characters.

k’th node from the end of linked list

Given the head of a Singly LinkedList, Find k'th node from the end of a linked list.

Example: k = 2
0000020
i j "
OaO0n00020
| j

Fast & Slow Pointers

The Fast & Slow pointer approach, also known as the Hare & Tortoise algorithm, is a pointer algorithm that
uses two pointers which move through the array (or sequence/LinkedList) at different speeds.

= Fast & Slow Pointers, distance btw them

= Speed

LinkedList has a cycle

fast, slow

- - - - - 6
1t
slow fast

-5 5!—).—)-—1-—'

slow fast

- E-E-EEE-E

Given the head of a Singly LinkedList, write a function to determine if

the LinkedList has a cycle in it or not.

ast slow

- - - -

fast, slow

[~ [=]-[E]-[=]-[E-[E]
* |

Sliding Window

In many problems dealing with an array (or a LinkedList), we are asked to find or calculate something among
all the contiguous subarrays (or sublists) of a given size.

the average

Given an array, find the average of all contiguous subarrays of size ‘K’ in it.

Sliding window -->

BEBOENEDE

Slide one element forward

Y
-
Co
N

longest substring

Given a string, find the length of the longest substring which has no repeating characters.

Example1 Input: String="aabccbb” Output: 3

Explanation: The longest substring without any repeating characters is "abc".

Example2 Input: String="abbbb"” Output: 2

Explanation: The longest substring without any repeating characters is "ab".

Example3 Input: String="abccde"” Output: 3

Explanation: Longest substrings without any repeating characters are "abc" & "cde".

59

-
2
-

OF S0OCIAL SCIENCES

V)

Lab 1

download and install Anaconda
create and Activate your Anaconda Python env
(Optional) install and setup VS Code

familiar yourself with Python and do exercise 2 lab1.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab1.ipynb

Lab 1

Download and install Anaconda

[https://www.anaconda.com/products/individual

-EJ ANACONDA. Products Pricing Selutions Resources Blog Company

Q

Individual Edition

Your data science
toolkit

With over 20 million users worldwide, the open-source Individual
Edition (Distribution) is the easiest way to perform Python/R data
science and machine learning on a single machine. Developed for
solo practitioners, it is the toolkit that equips you to work with

thousands of open-source packages and libraries.

2 iy

Open Source Conda Packages Manage Environments

https://www.anaconda.com/products/individual

Lab 1

Create and Activate your Anaconda Python env

1. Launch Conda Navigator

2. Environments — +Create to create a new env (mth251) Nome: | minas |

Location: /Users/zhonglun/opt/anacenda3/envs/mth251

3. Switch to your Python env mth251 from “Application on” Packages: @ pyton
o
4. Install Jupyter Notebook

Cancel Create

5. After that, Launch Jupyter Notebook

) Aneconda Navgator _ a
File Help

{2 ANACONDA NAVIGATOR

]
A Home =
plications on | mth251 v J Channels Refresh
. Environments — — -~
- .
gl Learning
o o
. .
- Community AN
Jupyter
h
Notebook Orange 3
6.2.0 3.26.0
Webrbased, interactive computing notebook Component based data mining framewoark.
emvironment. EJit and run human-readable Data visualization and data analysis for
docs while describing the data analysis. novice and expert, Interactive workFlows

Discover premium data ;
science content with a large toolbox.

scumentation ‘ '
Anaconda Blog

Lab 1

Create and Activate your Anaconda Python env

¢ Also possible to perform via command line:

create the env

conda create -n mth251 python=3.8

activate the env

conda activate mth251

install jupyter

conda install -c conda-forge notebook

multipledispatch for labl

conda install -c anaconda multipledispatch
start jupyter notebook

vV VV V V V V V V V

jupyter notebook

= copy & paste the Jupyter link in the prompt to your browser
® save notebooks to your local

= Control-C to stop Jupyter from the command line

| N TR D T SR T RS N A

Lab 1

Create and Activate your Anaconda Python env

6. Now you are ready to create, edit and run

Jupyter notebooks (lab1.ipynb):

v

github/notebooks/

@® localhost: o ® F @ O bd @ % =5 iR :
~ Jupyter Quit | Logout
Files Runnin g Clusters

Select items to perform actions on them. Upload New~ &

(Do ~ M/ github/ notebooks Name ¥ LastModified = File size
o seconds ago

O & labl.ipynb 8monthsago 20.4 kB

O & lab2.ipynb 8monthsago 25.8 kB

O & lab3.ipynb 8monthsago 37.9 kB

O & labd.ipynb 8 months ago 16.7 kB

O & labs.ipynb 8monthsago ~ 33.3 kB

O & lab6.ipynb 8monthsago 2.36 kB

e ————————

Lab 1

»{ VS Code

VS Code now fully integrated with Jupyter notebook, refer to this link:
[Jupyter Notebooks in VS Code

CO Google Colab

Google provides online Jupyter env:

[4 https://colab.research.google.com/

https://www.youtube.com/watch?v=Ozq24uAshXo
https://colab.research.google.com/
https://github.com/fastzhong/mth251/tree/main/public/notebooks
https://colab.research.google.com/github/fastzhong/mth251/blob/main/public/notebooks/lab1.ipynb

Lab 1

lab1.ipynb
= Python

1. Data Type & Operators
2. Collections

3. Program Structure

4, 00 & Class

= BigO

Lab 2

= review Array, Stack, Queue, Recursion

lab2.ipynb

= exercise J

® priority queue

m circular queue

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab2.ipynb

Lab 2

Exercise: two sum
Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example 1
Input: nums =[2,7,11,15], target = 9
Output: [0, 7]

Because nums[0] + nums[1] == 9, we return [0, 1]

Example 2
Input: nums = [3,2,4], target = 6
Output: [71,2]

Example 3
Input: nums = [3,3], target = 6
Output: [0,7]

Lab 2

Exercise: valid parentheses

Given a string s containing just the characters '(', '), '{(", '}, '[' and '], determine if the input string is valid.
An input string is valid if:

= Open brackets must be closed by the same type of brackets.

= Open brackets must be closed in the correct order.

Example 1

Input: s ="()[1{}" Output: true
Example 2

Input: s ="(]" Output: false
Example 3

Input: s ="([)]" Output: false
Example 4

Input: s = "{[]}" Output: true

Lab 2

Priority Queue is similar to queue but the element with higher priority can be moved forward to the front. Use exiting Queue class to

implement a priority queue (element with lower value has higher priority).

[J Priority Queue can be used in Printer Jobs or Schedule Tasks.

Lab 2

Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position

is connected back to the first position to make a circle. It is also called "Ring Buffer".

Design your implementation of circular queue.

Lab 2

Circular Queue

Head

1. init i

Initially the queue is
empty, as Head and Tail
are at same location

A simple circular queue
with size 8

2. enqueue D1

Tail always points to the
location where new data
will be inserted.

D1 although holds the same

3. enqueue D2, D3, D4 and dequeue D1 °;S::?,;?:;i§u::::::::i:::"

Queue is only between Head

a and Tail, hence data in queue
p =D2, D3, D4

/50

Tail

Lab 2

Circular Queue

4. enqueue D5, D6, D7, D8

5. dequeue D2, D3, D4, D5 and enqueue D9,
D10

Tail gets ialised to 0
after location 8, same will
happe he Head

pointer

Lab 2

Circular Queue

[J One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue
becomes full, we cannot insert the next element even if there is a space in front of the queue (and it does not prevent the program accidentally

creates a large queue or stack and use up the memory).
Implementation of CircularQueue class:

= enqueue(): insert the element

= dequeue(). delete the element

= front(): return the first element in the queue, if queue is empty, return None
= rear(): return the last element in the queue, if queue is empty, return None
= is_empty(): return true if queue is empty

m js_full(): return true if queue is full

Lab 3

= Python (lab1)
5. misc.
6. PEP8
m review Linked List, Doubly Linked List

m exercise 2 lab3.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab3.ipynb

Lab 3

Exercise
= implement Stack by linked list
= implement Queue by linked list
m reverse a linked list

® recursive implementation

m jterative implementation

Lab 4

m review Binary Tree and 4 traverse methods

= exercise .2 lab4.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab4.ipynb

Lab 4

Exercise
m convert binary tree from linked list to array
m convert binary tree from array to linked list

m check a balanced binary tree

Lab 4

Exercise: get maximum depth of binary tree

A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

For example: the maximum depth is 3

Lab 4

Exercise: get minimum depth of binary tree

A binary tree's minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

For example: the minimum depth is 3

Lab 4

Exercise: check a complete binary tree

In a complete binary tree, every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can
have between 1 and 2h nodes inclusive at the last level h.

complete = true: complete = false:

m review linear search, binary search

m |et us do some exercises .2 lab5.ipynb

https://github.com/fastzhong/mth251/blob/main/public/notebooks/lab5.ipynb

Lab 5

lineary search & binary search

1. Go to https://www.cs.usfca.edu/~galles/visualization/Search.html to understand how Linear Search & Binary Search is working

2. Implement Linear Search & Binary Search in Python by yourself:

= familiar with Python coding style
= understand the input, output, steps and ending condition
= |earn and compare different approaches (time & space complexity)

= test code reliability with different cases

http://localhost:12445/%5Bhttps://www.cs.usfca.edu/~galles/visualization/Search.html%5D

Lab 5

Exercise: palindrome

Implement a Python function to determines if a string is a palindrome, for example, ‘racecar’ and ‘level’ are palindromes

Lab 5

Exercise: remove duplicate numbers
Given a sorted array nums, remove the duplicates in-place such that each element appears only once and returns the new length.
Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

Example 1

Input: nums =[1,1,2]

Output: 2, nums =[1,2]

Explanation: Your function should return length = 2, with the first two elements of nums being 1 and 2 respectively. It doesn’'t matter what you

leave beyond the returned length.

Example 2

Input: nums =[0,0,1,1,1,2,2,3,3,4]

Output: 5, nums =[0,1,2,3,4]

Explanation: Your function should return length = 5, with the first five elements of nums being modified to 0, 1, 2, 3, and 4 respectively. It doesn't

matter what values are set beyond the returned length.

Lab 6

TMA review

